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Universality of the island density exponent in growth models of monomer
and dimer chains in two dimensions
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Using Monte Carlo simulations, the scaling of the island density exponent for the aggregation of particles as
chains of monomers and dimers is examined. We found that particles can perform a one- or two-dimensional
diffusion depending on the details of the models and on the values of the coverage and diffusion anisotropy.
Hence a nonuniversal behavior for the island density expopeah be obtained. Eventually, in the asymptotic
regime, the one-dimensional exponent=(1/4) is always recovered because the formed one-dimensional
islands (chaing play the role of obstacles to the diffusing particles which are thus forced to perform a
one-dimensional diffusion.

PACS numbd(s): 61.43.Bn, 68.35.Fx, 05.40a

[. INTRODUCTION direction in both models is the& direction. Lateral sides,
then, play the role of obstacles for the diffusion of particles
Several models of deposition, diffusion, and irreversiblein the y direction. This blocking, caused by the formed is-
aggregation of particles forming immobile islands on two-lands, affects subsequent particle aggregation and its effects
dimensional square lattices have been recently stydieg]. ~ &re stronger foA>1 (i.e., P,>P,) than for isotropic diffu-
The growth of islands is governed by the raidetween the SN Blocking also appears to be crucial for monomer is-
. . . . lands causingy to smoothly change from 1/3 to 1/4 &s
average number of jumps per unit of time for an isolated

. . ) increases fromA=1 to the limit A—« (provided thatA is
particle and the average number of deposited particles Pfhite. A<w). Particles perform an “effective” one-

site and unit of time. WherR increases, each adatom per- gimensional diffusion in the direction (i.e., in the direction
forms a greater number of hops on average between the ifrerpendicular to the fast diffusion directioriThis nonuni-
coming of particles. Then adatoms have a greater probabilityersal behavior contrasts with the Monte Carlo results ob-
of reaching already existing islands than forming new onestained for a dimer-chain aggregation mofH)]. In this case,
More specifically, at a fixed coveragg it has been shown we found thaty=1/3 for 1<A<ce.

that the average number of island per lattice sitebehaves The results of Refs[10] and [11] were both obtained

_ _ _ L A

asN~R™ X for large enougtR. The so-called “island density Within the same range d% (10'<R<10"). A natural ques-
exponent”y is expected to bg = 1/4 for deposited particles tion arises frqm these resu_lts: vyhat is responsible for ob-
performing a one-dimensional diffusigwhich is equivalent ~taining very different behaviors using two models that are so
to working with a one-dimensional substragad y=1/3 for similar. The first goal of the present work is to answer this

two-di ional diffusi question.
o-dimensional diftusion. The second question we address is related to universality.

An interesting question arises when the diffusion is anisogoth models behave in different ways within a large region
tropic. Let A be the anisotropic parameter defined s of R but in the limitR—c one expects a unique for both
=P, /P,, whereP, andP, are the probabilities of jumping models, recovering a universal behavior. We found that this
per time unit of an isolated particle between two first-exponent is y=1/4, which corresponds to the one-
neighbor sites of a square lattice in tiieand x directions,  dimensional case. This outcome is valid in the whole range
respectively. Monte Carlo results obtained for point, com-of the anisotropic parametér As it will be described in Sec.
pact, and approximately square islands strongly suggest thit, y adopts the value 1/4 for ank (1<A<®). Since the
x=1/3 for 1=sA<x [5,9]. Then, for finite values oA, the  average length of the islands increasesRascreases, par-
exponenty seems to be universéi.e., A independentand  ticles have multiple collisions with the lateral sides of the
would correspond to the case of two-dimensional diffusionislands already formed, independently of the value adopted
For the case of point islands, only for infinite anisotropicfor A. Hence the arriving particles perform an effective one-
diffusion, A=c0, is the one-dimensional resyit= 1/4 recov-  dimensional diffusion before attaching to islands ends. We
ered. will show that these arguments are independent of the details

Very recently, two similar growth models of one- of the models as long as we deal with one-dimensional is-

dimensional islands in a square lattice were stuigy1g.  'ands.
In one of them, islands form as chains of monomers and in
the other as chains of dimers. In both models particles ag-
gregate at the ends of the chains and the probability of stick- As commented on above, we studied two growth models
ing is zero at the lateral sides. Let us assume that the growihf one-dimensional islands. In model | these islands are com-

II. MODELS
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posed of monomers and in model Il of dimers. In both mod- a
els the substrate is represented by a square latticke, of - x = = =
XL, sites where the distance between nearest neigihtioy " m® ®R = B Ia
sites isa. Periodic boundary conditions were adopted in or-
der to avoid edge effects. Once deposited, particles describe a0t - ®0® - =
random walks and form islands. Diffusion can be aniso- a =
tropic; i.e., particles can have different probabilities of jump- ®®e = & |00
ing to a NN site in thex than in they direction. We will @@ ® = = = = = =
assume that islands can neither break nor diffuse. C
In both models the following processes take plac&) = = = @ OHOHO®| @i =
deposition,(b) diffusion, (c) nucleation, andd) aggregation.
The rules for model | are as follows. = = = O OHOHOTO® =»
(a) Deposition: each empty site of the lattice is occupied I
by a new particle with probabilitg per unit of timet. y/m ®m = ® ®m ®E ®E =E =
(b) Diffusion: an isolated particldi.e., a particle not X
bounded to an islandattempts to jump to any of its NN sites o
in the x direction with probabilityP, and to any of its NN @ - pacticke = ad-dimer (@) = growthsite
sites in they direction with probabilityP,, per unit of time o _

t. If the particle attempts to jump to an occupied site, the
jump is not performed and the particle remains at its original FIG. 1. The substratésolid squarésand the growth of dimer
site. L e chains. Two particles that become nearest neighbors iy theec-

© _NUCIeat'Onj i, a,s a consequgnqe Of_ d'ffPS'O” Ol tion nucleate, forming a dimer as shown in structArélhis dimer
dep05|t|on, a particle arrives at a NN site in theirection of plays the role of a seed for a dimer chain. Next, particles can ag-
a second isolated particle, these two particles nucleate, formggegate in growth sites as seen in structBreo finally form a
ing a new island composed of two particles. chainlike structurec.

(d) Aggregation: if, as a consequence of diffusion or

deposition, a particle arrives at a NN site in theirection of .o mparable because in model Il the islands are composed of
an island, this particle sticks to this island, increasing thejimers and then it is needed to double the number of par-
number of particles in the island by 1. ticles to obtain the same number of islands of similar lengths.

The rules of deposition and diffusion for model Il are the Indeed, in our Monte Carlo simulations approximately the
same as for model I. The rest of the rules for model Il are ag3me number of islands with the same average length of
follows. o o islands were obtained.

(¢’) Nucleation: if, as a consequence of diffusion or \ye will now attempt to explain the reason for the discrep-
deposition, a particle arrives at a NN site in ghdirection of ¢y found between models | and I1. Let us start by defining
a second isolated particle, these two particles nucleate, form; growth site for an island as a site where a monomer can
ing a dimer. This dimer plays the role of a seed for the dimetyi5.h 1o this island. These growth sites are located at the

chair). N ) . ends of islands for both models. Figure 1 shows growth sites
(d’) Aggregation:  Fig. 1 shows growth sites for different (gnen circley, particles(solid circles, and dimers in model

structures. If a diffusing or deposited particle arrives at g AssumingAs1 (i.e., P,<P,), it is very difficult for a

growth site, it sticks, increasing the number of particles Ofonomer, diffusing from the bottom, to reach the growth site
this island by 1.

. i and stick to islandC. The sitei plays the role of a hidden
In short, the only difference between the two models iSqyqih site for monomers arriving from the bottom. Then a
the manner in which particles stick. In model |, particles j,onomer can pass through the end of an island without at-
located at nearest neighbors in the direction become taching to it.

bounded and form islands. In model II, particles must form ¢ sitation described above never occurs in the case of

dimers first. This occurs when two isolated particles meet agands composed of monomeraodel ). When a monomer
nearest neighbors in thedirection. Then dimers can grow rgaches the end of an island, it always sticks to this end. A

by incorporating particles and forming new dimers in the ., ohomer between two long islands, especiallp## 1, col-

direction. lides many times before reaching an island éel, it per-
forms an effective one-dimensional diffusion in thelirec-
IIl. RESULTS AND DISCUSSION f[ion). Eventgally, When_ the monomer passes close to an
island end, it always sticks to this island in model I. Con-
As commented on in Sec. |, the Monte Carlo results obversely, for model 1, depending on the island ending, the
tained from models | and Il are quite differefRefs.[10]  monomer can escape from the region limited by the two
and[11]). A nonuniversal behavior of the exponeptas a  parallel island and perform a two-dimensional diffusion.
function of the anisotropic parametérfor model | and a In order to simulate the case of hidden growth sites which
universal behavior independent of the valuefoffor 1I<A  appear in model Il, we modified model | by adding a new
<) for model Il were found. Moreover, the results of mod- rule: a monomer arriving at a growth site sticks to the is-
els | and Il were both obtained approximately in the samdand with probabilityp. If the monomer does not stick, the
region of values ofR. Coverages used wer@=0.05 for monomer will continue diffusing.
model | and9#=0.10 for model Il. These values df are Figure 2 showdN versusR in log-log scales for the modi-
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FIG. 2. The island density for model(monomer chainswith 10°  10° 10'° 1611 ' 102
different sticking probabilityp and for model ll(dimer chainyas a R
function of R: Solid squares correspond to model | witk 1, open
triangles top=1/10, solid diamonds tp= 1/50, and solid circles to FIG. 3. The ratio between the average length of isldratsd the
p=1/200. Open circles correspond to model Il. Coveragesfare square root of the mean-square displacement i liieection, Ax,
=5% for model | andd=10% for model II. as a function oR for different values of the anisotropic parameter
A. Note thatAx is always smaller thahandAx/l decreases witR
and A, indicating a tendency towards a one-dimensional diffusion.
(Lines are a guide to the eye.

fied model | withA=10° and for various values of the stick-
ing probability p. Let us compare first the case p# 1/200
with, the case ofp=1. As is shown,y for p=1/200 is

grehate_r thhanldfo?=|1 in the Iexan;;cr{ﬁd r?r?ge (RH If th'?h monomers is much smaller than the number of islands, we
enhavior holds for larger values an those shown, e - -on \writeo=NI, wherel is the average length of islands. As

curves must cross. However, this is not expected to happeg consequenck~RY. As monomers do not stick to the lat-

becatuse the delnfrl]ty 0: |s![zra]nds fprcl must b(? alvj\élglys eral side of islands, their diffusion is limited to rectangles of
greatér or equal than for the case corresponding length in the order of. WhenR increases| also increases

gefgf]ardltis]cs Ole gfhnera:, tgefposs[{ple effecttsdpfbelng and the diffusion of monomers becomes more and more one
iérent trom 1 in the island formation Must decrease a%yimansjonal. Unless the square root of the mean-square dis-

particle diffusion becomes higher, i.e., Bdncreases. Then acement in thes direction (Ax) were much greater than
we conclude that these curves must eventually match, arﬁAx%) one should expect that monomers perform an ef-
then they will present the same expongrasR—c. It wil fective o’ne—dimensional diffusion in the limR—~. The

be seen below that, for large enough value®of— 1/4 for mean-square displacemeAt? can be computed fr.om the
model | regardless gf. This tendency is apparent for values mean value of stepa performed by a monomer until its
of p greater than 1/200, for example, fpr=1/50, as also attachment to another monomer or existing ch@ie., the

shown in.Fig. 2. quzl/lo the matching of curves already end of the diffusion due to nucleation or aggregation pro-
appears in the region @ shown in this figure. cessegas follows:

The matching curves in Fig. 2 correspond to similar struc-
tures becaus8l and the separation between islands in yhe
direction(equal to 10) are the same. F@<1, the diffusing AX(M)2=Tr Px _ 1)
particles do not stick to the first end of an island that they Px+Py
find. Thus the average number of steps performed by an
isolated particle withp<<1 is greater than for the case pf  This equation holds because monomers move freely ixthe
=1. For small values of, then, it is more likely for an direction before sticking to another particle or an island. In
isolated particle to find another diffusing isolated particleFig. 31/Ax is plotted as a function dR for A=1, 100, and
and create a new island. Hence the number of isldadd 1000 andd=0.05, wherd andn were obtained from Monte
the density for p<1 must be greater or equal than for the Carlo simulations and x using Eq.(1). Note that in all cases
case corresponding to=1. The results of model Il witlh  1>Ax. This result strongly indicates thgtwill correspond
=10® are also shown in Fig. 2. These results are very similato a one-dimensional diffusion wheR— o,

to those obtained for the modified model | wigh= 1/200, More information about the way in which monomers dif-
giving support to the above-mentioned argument used to exXuse is revealed by computing the square root of the mean-
plain the discrepancy between models | and IlI. square displacement in tlyedirection (Ay) as a function of

We will focus now on the universality of the island den- jumping stepn for an isolated random walkéa tracer par-
sity exponenty for model I. In this model islands are linear ticle). The particle starts its walk in a randomly chosen
chains with a width of only one particle. Since the islands areempty site of the substrate. This substrate was previously
randomly distributed, the average distance between two corobtained by applying the rules of model | up to the point
secutive islands in thg direction is 18. This distance re- where the final coveragé is reached. This random walker
mains fixed in the limitR—c, as long as the coverage is does not stick at the end of islands, and then it always dif-
kept constant. Since for large values Rfthe number of fuses. For this tracer particle we also compute the number of
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FIG. 4. The square root of the mean-square displacement in the F|G. 5. Values of exponent as a function ofR and A. The
y direction (Ay/a) as a function of jumping step for an isolated  decrease ofr with R and A indicates that the diffusion becomes
random walker, i.e., a tracer particle that does not stick at the end ahore one dimensional.
islands. The dashed straight line corresponds to a random walk on o )
an empty substrate. As diffusion progresses, the tracer particlé=1, 100, and 1000 are presented in Fig. 5, showing ghat
eventually interacts with islands that limit the displacement inythe clearly decreases witR, indicating that the diffusion be-
direction. Note that, around, the random walker remains trapped COMES mMore one dimensional.

between islands and then the diffusion becomes one dimensional in All the results previously shown correspondéte 0.05. If
the x direction. Open squares correspond Re-10'! and solid ¢ changes, the average vertical distance between islands

circles toR=10". changes, because this distance & Ebr a fixed value oR,
the average length of islandsalso changes. It is expected

o o ) ] ) that| increases withy, and this indeed occurs. Then, for a
distinct visited sites3(n), as a function ofi. Figure 4 shows |arger value ofé, the diffusion of monomers in thg direc-
logio(Ay/a) versus logg(n) for A=100, §=0.05, andR tion becomes more limited because the islands are closer to
=10 and 16 The dashed straight line corresponds to aeach other and also they are longer. For these reasons we
random walk on an empty substrggesquare lattice with no expect that the exponent will approach 1/4 whend in-
islandg. At short times, the random walk behaves as in arcreases. In Fig. 6 we present 1gNRY%) versus logy(R) for
empty substrate. As diffusion progresses, the walker eventtlA= 100 andf¢=0.02, 0.05, and 0.10. It can be observed that
ally finds the lateral side of an island that plays the role of any decreases witl#, and the results suggest a crossovey to
obstacle delaying the displacement in theirection. Atlong ~ =1/4 for larger values oR than those shown in the figure.
times the random walker recovers the behawigrt'/2 Itis  Also, from these results we conclude that for non-extremely-
clearly seen thady is modified by the presence of obstacleslarge values oR, one can find an effective exponent which
and that the effect increases wit This means that the depends both, on the anisotropic diffusion paramétend
diffusion becomes more one dimensional Rsincreases. ©On the coveragé.
Note thafi is much smaller than the number of steps needed [N summary, the results shown in Figs. 3—6 strongly sug-
by a random walk to reach the long-time regimay( 9gest that for model Ixy—1/4 whenR—, for 1<A<c.
«tY2) Moreover,Ay(n)~ 1/6, where 18 is the mean sepa-
ration between islands. This result clearly shows that, around
n, the random walker remains trapped between islands per-
forming an effective one-dimensional diffusion in thedi-

rection. 0-2
The number of different sites visited by the tracgfn), -
is a function ofn. Specifically, the exponent is defined 3
through the relation %
S(n)~n™. 2 0.1

In our case, we are interested in as the local slope of
log;o(S as a function of logy(n) around the poinh. The
exponentw gives us information regarding the kind of diffu-
sion that the random walk performs nearlf a=1, we have FIG. 6. Island density exponegtas a function oR for different

a two-dimensional diffusion and expect a two-dimensionakoverages. Note that the higher the coverage, the more one dimen-
island density exponeny=1/3. On the other hand, itx  sjonal the diffusion is. As coverage increases, the blocking action of
=1/2, we expecly=1/4, corresponding to one-dimensional the formed islands becomes stronger, confining particles to move
diffusion. The values of the exponemtas a function oRfor  only in thex direction.
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Figure 2 shows that the results p£1/3 obtained for model dealing with one-dimensional islandshaing that play the

Il can be explained with the modified model I. As mentionedrole of obstacles to the diffusing particles, which are forced

above, the curves of Igg(N) against logy(R) must match for  to perform a one-dimensional diffusion. For valuesRofiot

large values ofR. Then we conclude that for the modified large enough, these obstacles cannot determine the effective

model | and, in consequence also for model I, it is expecteane-dimensional character of diffusion, and then particles

that y—1/4 asR—«, for 1<A<. Then we conclude that can perform a one- or two-dimensional diffusion depending

universality is recovered for the three models in theon the details of the models and on the values of the cover-

asymptotic regime oR. age 6 and diffusion anisotropyA. Thus a nonuniversal be-
havior of the exponeny can be found.

IV. CONCLUSIONS
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