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Universality of the island density exponent in growth models of monomer
and dimer chains in two dimensions
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Using Monte Carlo simulations, the scaling of the island density exponent for the aggregation of particles as
chains of monomers and dimers is examined. We found that particles can perform a one- or two-dimensional
diffusion depending on the details of the models and on the values of the coverage and diffusion anisotropy.
Hence a nonuniversal behavior for the island density exponentx can be obtained. Eventually, in the asymptotic
regime, the one-dimensional exponent (x51/4) is always recovered because the formed one-dimensional
islands ~chains! play the role of obstacles to the diffusing particles which are thus forced to perform a
one-dimensional diffusion.

PACS number~s!: 61.43.Bn, 68.35.Fx, 05.40.2a
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I. INTRODUCTION

Several models of deposition, diffusion, and irreversi
aggregation of particles forming immobile islands on tw
dimensional square lattices have been recently studied@1–9#.
The growth of islands is governed by the ratioR between the
average number of jumps per unit of time for an isola
particle and the average number of deposited particles
site and unit of time. WhenR increases, each adatom pe
forms a greater number of hops on average between th
coming of particles. Then adatoms have a greater probab
of reaching already existing islands than forming new on
More specifically, at a fixed coverageu, it has been shown
that the average number of island per lattice site,N, behaves
asN;R2x for large enoughR. The so-called ‘‘island density
exponent’’x is expected to bex51/4 for deposited particles
performing a one-dimensional diffusion~which is equivalent
to working with a one-dimensional substrate! andx51/3 for
two-dimensional diffusion.

An interesting question arises when the diffusion is ani
tropic. Let A be the anisotropic parameter defined asA
5Py /Px , wherePy andPx are the probabilities of jumping
per time unit of an isolated particle between two fir
neighbor sites of a square lattice in they and x directions,
respectively. Monte Carlo results obtained for point, co
pact, and approximately square islands strongly suggest
x51/3 for 1<A,` @5,9#. Then, for finite values ofA, the
exponentx seems to be universal~i.e., A independent! and
would correspond to the case of two-dimensional diffusi
For the case of point islands, only for infinite anisotrop
diffusion,A5`, is the one-dimensional resultx51/4 recov-
ered.

Very recently, two similar growth models of one
dimensional islands in a square lattice were studied@10,11#.
In one of them, islands form as chains of monomers and
the other as chains of dimers. In both models particles
gregate at the ends of the chains and the probability of st
ing is zero at the lateral sides. Let us assume that the gro
PRE 611063-651X/2000/61~3!/2954~5!/$15.00
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direction in both models is thex direction. Lateral sides
then, play the role of obstacles for the diffusion of particl
in the y direction. This blocking, caused by the formed i
lands, affects subsequent particle aggregation and its eff
are stronger forA@1 ~i.e., Py@Px) than for isotropic diffu-
sion. Blocking also appears to be crucial for monomer
lands causingx to smoothly change from 1/3 to 1/4 asA
increases fromA51 to the limit A→` ~provided thatA is
finite, A,`). Particles perform an ‘‘effective’’ one-
dimensional diffusion in thex direction~i.e., in the direction
perpendicular to the fast diffusion direction!. This nonuni-
versal behavior contrasts with the Monte Carlo results
tained for a dimer-chain aggregation model@10#. In this case,
we found thatx51/3 for 1<A,`.

The results of Refs.@10# and @11# were both obtained
within the same range ofR (107,R,1012). A natural ques-
tion arises from these results: what is responsible for
taining very different behaviors using two models that are
similar. The first goal of the present work is to answer th
question.

The second question we address is related to universa
Both models behave in different ways within a large regi
of R, but in the limitR→` one expects a uniquex for both
models, recovering a universal behavior. We found that
exponent is x51/4, which corresponds to the one
dimensional case. This outcome is valid in the whole ran
of the anisotropic parameterA. As it will be described in Sec
III, x adopts the value 1/4 for anyA (1<A,`). Since the
average length of the islands increases asR increases, par-
ticles have multiple collisions with the lateral sides of t
islands already formed, independently of the value adop
for A. Hence the arriving particles perform an effective on
dimensional diffusion before attaching to islands ends.
will show that these arguments are independent of the de
of the models as long as we deal with one-dimensional
lands.

II. MODELS

As commented on above, we studied two growth mod
of one-dimensional islands. In model I these islands are c
2954 ©2000 The American Physical Society
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PRE 61 2955UNIVERSALITY OF THE ISLAND DENSITY EXPONENT . . .
posed of monomers and in model II of dimers. In both mo
els the substrate is represented by a square lattice oLx
3Ly sites where the distance between nearest neighbor~NN!
sites isa. Periodic boundary conditions were adopted in
der to avoid edge effects. Once deposited, particles desc
random walks and form islands. Diffusion can be anis
tropic; i.e., particles can have different probabilities of jum
ing to a NN site in thex than in they direction. We will
assume that islands can neither break nor diffuse.

In both models the following processes take place:~a!
deposition,~b! diffusion, ~c! nucleation, and~d! aggregation.
The rules for model I are as follows.

~a! Deposition: each empty site of the lattice is occup
by a new particle with probability« per unit of timet.

~b! Diffusion: an isolated particle~i.e., a particle not
bounded to an island! attempts to jump to any of its NN site
in the x direction with probabilityPx and to any of its NN
sites in they direction with probabilityPy , per unit of time
t. If the particle attempts to jump to an occupied site,
jump is not performed and the particle remains at its origi
site.

~c! Nucleation: if, as a consequence of diffusion
deposition, a particle arrives at a NN site in thex direction of
a second isolated particle, these two particles nucleate, fo
ing a new island composed of two particles.

~d! Aggregation: if, as a consequence of diffusion
deposition, a particle arrives at a NN site in thex direction of
an island, this particle sticks to this island, increasing
number of particles in the island by 1.

The rules of deposition and diffusion for model II are t
same as for model I. The rest of the rules for model II are
follows.

~c8! Nucleation: if, as a consequence of diffusion
deposition, a particle arrives at a NN site in they direction of
a second isolated particle, these two particles nucleate, fo
ing a dimer. This dimer plays the role of a seed for the dim
chain.

~d8! Aggregation: Fig. 1 shows growth sites for differe
structures. If a diffusing or deposited particle arrives a
growth site, it sticks, increasing the number of particles
this island by 1.

In short, the only difference between the two models
the manner in which particles stick. In model I, particl
located at nearest neighbors in thex direction become
bounded and form islands. In model II, particles must fo
dimers first. This occurs when two isolated particles mee
nearest neighbors in they direction. Then dimers can grow
by incorporating particles and forming new dimers in thex
direction.

III. RESULTS AND DISCUSSION

As commented on in Sec. I, the Monte Carlo results
tained from models I and II are quite different~Refs. @10#
and @11#!. A nonuniversal behavior of the exponentx as a
function of the anisotropic parameterA for model I and a
universal behavior independent of the value ofA ~for 1<A
,`) for model II were found. Moreover, the results of mo
els I and II were both obtained approximately in the sa
region of values ofR. Coverages used wereu50.05 for
model I andu50.10 for model II. These values ofu are
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comparable because in model II the islands are compose
dimers and then it is needed to double the number of p
ticles to obtain the same number of islands of similar lengt
Indeed, in our Monte Carlo simulations approximately t
same number of islands with the same average length
islands were obtained.

We will now attempt to explain the reason for the discre
ancy found between models I and II. Let us start by defin
a growth site for an island as a site where a monomer
attach to this island. These growth sites are located at
ends of islands for both models. Figure 1 shows growth s
~open circles!, particles~solid circles!, and dimers in model
II. Assuming A@1 ~i.e., Px!Py), it is very difficult for a
monomer, diffusing from the bottom, to reach the growth s
i and stick to islandC. The sitei plays the role of a hidden
growth site for monomers arriving from the bottom. Then
monomer can pass through the end of an island without
taching to it.

The situation described above never occurs in the cas
islands composed of monomers~model I!. When a monomer
reaches the end of an island, it always sticks to this end
monomer between two long islands, especially ifA@1, col-
lides many times before reaching an island end~i.e., it per-
forms an effective one-dimensional diffusion in thex direc-
tion!. Eventually, when the monomer passes close to
island end, it always sticks to this island in model I. Co
versely, for model II, depending on the island ending, t
monomer can escape from the region limited by the t
parallel island and perform a two-dimensional diffusion.

In order to simulate the case of hidden growth sites wh
appear in model II, we modified model I by adding a ne
rule: a monomer arriving at a growth site sticks to the
land with probabilityp. If the monomer does not stick, th
monomer will continue diffusing.

Figure 2 showsN versusR in log-log scales for the modi-

FIG. 1. The substrate~solid squares! and the growth of dimer
chains. Two particles that become nearest neighbors in they direc-
tion nucleate, forming a dimer as shown in structureA. This dimer
plays the role of a seed for a dimer chain. Next, particles can
gregate in growth sites as seen in structureB to finally form a
chainlike structureC.
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fied model I withA5103 and for various values of the stick
ing probabilityp. Let us compare first the case ofp51/200
with, the case ofp51. As is shown,x for p51/200 is
greater than forp51 in the examined range ofR. If this
behavior holds for larger values ofR than those shown, the
curves must cross. However, this is not expected to hap
because the density of islands forp,1 must be always
greater or equal than for the case corresponding top51
regardless ofR. In general, the possible effects ofp being
different from 1 in the island formation must decrease
particle diffusion becomes higher, i.e., asR increases. Then
we conclude that these curves must eventually match,
then they will present the same exponentx asR→`. It will
be seen below that, for large enough values ofR, x→1/4 for
model I regardless ofp. This tendency is apparent for value
of p greater than 1/200, for example, forp51/50, as also
shown in Fig. 2. Forp51/10 the matching of curves alread
appears in the region ofR shown in this figure.

The matching curves in Fig. 2 correspond to similar str
tures becauseN and the separation between islands in thy
direction~equal to 1/u! are the same. Forp,1, the diffusing
particles do not stick to the first end of an island that th
find. Thus the average number of steps performed by
isolated particle withp,1 is greater than for the case ofp
51. For small values ofp, then, it is more likely for an
isolated particle to find another diffusing isolated partic
and create a new island. Hence the number of islands~and
the density! for p,1 must be greater or equal than for th
case corresponding top51. The results of model II withA
5103 are also shown in Fig. 2. These results are very sim
to those obtained for the modified model I withp51/200,
giving support to the above-mentioned argument used to
plain the discrepancy between models I and II.

We will focus now on the universality of the island de
sity exponentx for model I. In this model islands are linea
chains with a width of only one particle. Since the islands
randomly distributed, the average distance between two c
secutive islands in they direction is 1/u. This distance re-
mains fixed in the limitR→`, as long as the coverage
kept constant. Since for large values ofR the number of

FIG. 2. The island density for model I~monomer chains! with
different sticking probabilityp and for model II~dimer chains! as a
function ofR: Solid squares correspond to model I withp51, open
triangles top51/10, solid diamonds top51/50, and solid circles to
p51/200. Open circles correspond to model II. Coverages aru
55% for model I andu510% for model II.
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monomers is much smaller than the number of islands,
can writeu>Nl, wherel is the average length of islands. A
a consequencel;Rx. As monomers do not stick to the la
eral side of islands, their diffusion is limited to rectangles
length in the order ofl. WhenR increases,l also increases
and the diffusion of monomers becomes more and more
dimensional. Unless the square root of the mean-square
placement in thex direction (Dx) were much greater than
l (Dx@ l ), one should expect that monomers perform an
fective one-dimensional diffusion in the limitR→`. The
mean-square displacementDx2 can be computed from the
mean value of stepsn̄ performed by a monomer until its
attachment to another monomer or existing chain~i.e., the
end of the diffusion due to nucleation or aggregation p
cesses! as follows:

Dx~ n̄!25n̄
Px

Px1Py
. ~1!

This equation holds because monomers move freely in thx
direction before sticking to another particle or an island.
Fig. 3 l /Dx is plotted as a function ofR for A51, 100, and
1000 andu50.05, wherel andn̄ were obtained from Monte
Carlo simulations andDx using Eq.~1!. Note that in all cases
l .Dx. This result strongly indicates thatx will correspond
to a one-dimensional diffusion whenR→`.

More information about the way in which monomers d
fuse is revealed by computing the square root of the me
square displacement in they direction (Dy) as a function of
jumping stepn for an isolated random walker~a tracer par-
ticle!. The particle starts its walk in a randomly chos
empty site of the substrate. This substrate was previou
obtained by applying the rules of model I up to the po
where the final coverageu is reached. This random walke
does not stick at the end of islands, and then it always
fuses. For this tracer particle we also compute the numbe

FIG. 3. The ratio between the average length of islandsl and the
square root of the mean-square displacement in thex direction,Dx,
as a function ofR for different values of the anisotropic paramet
A. Note thatDx is always smaller thanl andDx/ l decreases withR
andA, indicating a tendency towards a one-dimensional diffusi
~Lines are a guide to the eye.!
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distinct visited sites,S(n), as a function ofn. Figure 4 shows
log10(Dy/a) versus log10(n) for A5100, u50.05, and R
5107 and 1011. The dashed straight line corresponds to
random walk on an empty substrate~a square lattice with no
islands!. At short times, the random walk behaves as in
empty substrate. As diffusion progresses, the walker eve
ally finds the lateral side of an island that plays the role of
obstacle delaying the displacement in they direction. At long
times the random walker recovers the behaviorDy}t1/2. It is
clearly seen thatDy is modified by the presence of obstacl
and that the effect increases withR. This means that the
diffusion becomes more one dimensional asR increases.
Note thatn̄ is much smaller than the number of steps nee
by a random walk to reach the long-time regime (Dy
}t1/2). Moreover,Dy(n̄);1/u, where 1/u is the mean sepa
ration between islands. This result clearly shows that, aro
n̄, the random walker remains trapped between islands
forming an effective one-dimensional diffusion in thex di-
rection.

The number of different sites visited by the tracer,S(n),
is a function ofn. Specifically, the exponenta is defined
through the relation

S~n!;n̄a. ~2!

In our case, we are interested ina as the local slope o
log10(S) as a function of log10(n) around the pointn̄. The
exponenta gives us information regarding the kind of diffu
sion that the random walk performs nearn̄. If a51, we have
a two-dimensional diffusion and expect a two-dimensio
island density exponentx51/3. On the other hand, ifa
51/2, we expectx51/4, corresponding to one-dimension
diffusion. The values of the exponenta as a function ofR for

FIG. 4. The square root of the mean-square displacement in
y direction (Dy/a) as a function of jumping stepn for an isolated
random walker, i.e., a tracer particle that does not stick at the en
islands. The dashed straight line corresponds to a random wal
an empty substrate. As diffusion progresses, the tracer par
eventually interacts with islands that limit the displacement in thy
direction. Note that, aroundn̄, the random walker remains trappe
between islands and then the diffusion becomes one dimension
the x direction. Open squares correspond toR51011 and solid
circles toR5107.
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A51, 100, and 1000 are presented in Fig. 5, showing thaa
clearly decreases withR, indicating that the diffusion be-
comes more one dimensional.

All the results previously shown correspond tou50.05. If
u changes, the average vertical distance between isla
changes, because this distance is 1/u. For a fixed value ofR,
the average length of islandsl also changes. It is expecte
that l increases withu, and this indeed occurs. Then, for
larger value ofu, the diffusion of monomers in they direc-
tion becomes more limited because the islands are close
each other and also they are longer. For these reason
expect that the exponentx will approach 1/4 whenu in-
creases. In Fig. 6 we present log10(NR1/4) versus log10(R) for
A5100 andu50.02, 0.05, and 0.10. It can be observed th
x decreases withu, and the results suggest a crossover tox
51/4 for larger values ofR than those shown in the figure
Also, from these results we conclude that for non-extreme
large values ofR, one can find an effective exponent whic
depends both, on the anisotropic diffusion parameterA and
on the coverageu.

In summary, the results shown in Figs. 3–6 strongly s
gest that for model I,x→1/4 whenR→`, for 1<A,`.
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FIG. 5. Values of exponenta as a function ofR and A. The
decrease ofa with R and A indicates that the diffusion become
more one dimensional.

FIG. 6. Island density exponentx as a function ofR for different
coverages. Note that the higher the coverage, the more one di
sional the diffusion is. As coverage increases, the blocking actio
the formed islands becomes stronger, confining particles to m
only in thex direction.
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Figure 2 shows that the results ofx>1/3 obtained for mode
II can be explained with the modified model I. As mention
above, the curves of log10(N) against log10(R) must match for
large values ofR. Then we conclude that for the modifie
model I and, in consequence also for model II, it is expec
thatx→1/4 asR→`, for 1<A,`. Then we conclude tha
universality is recovered for the three models in t
asymptotic regime ofR.

IV. CONCLUSIONS

We have presented Monte Carlo results for the submo
layer epitaxial growth corresponding to two models in whi
islands grow as linear chains of monomers and dimers.
focused on the dependence of the island density on the
fusion to the deposition rateR and the diffusion anisotropy
A, with special interest in the island density exponentx cor-
responding to the asymptotic regimeR→`.

In short, in the asymptotic regime, we conclude that
one-dimensional exponentx51/4 is obtained because we a
n-

.

d

o-

e
if-

e

dealing with one-dimensional islands~chains! that play the
role of obstacles to the diffusing particles, which are forc
to perform a one-dimensional diffusion. For values ofR not
large enough, these obstacles cannot determine the effe
one-dimensional character of diffusion, and then partic
can perform a one- or two-dimensional diffusion depend
on the details of the models and on the values of the co
ageu and diffusion anisotropyA. Thus a nonuniversal be
havior of the exponentx can be found.
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